태그 보관물: Cloud Adoption

AI 컴퓨팅 리소스, 어디서 어떻게 사용되고 있을까?

대표 이미지

AI 컴퓨팅 리소스의 중요성

최근 인공지능(AI) 기술의 발전과 함께 AI 컴퓨팅 리소스의 중요성이 크게 부각되고 있습니다. AI 컴퓨팅 리소스는 머신러닝 모델의 훈련, 추론, 데이터 처리 등 다양한 작업을 수행하기 위해 필요한 하드웨어 및 소프트웨어 인프라를 의미합니다. 이러한 리소스의 효율적인 관리는 AI 기술의 성능과 경쟁력을 결정짓는 중요한 요소입니다.

AI 컴퓨팅 리소스의 사용 현황

AI 컴퓨팅 리소스는 다양한 산업 분야에서 활용되고 있으며, 특히 클라우드 서비스 제공업체(CSP)들이 주요 사용자로 부상하고 있습니다. AWS, Microsoft Azure, Google Cloud Platform 등 주요 클라우드 공급업체들은 AI 컴퓨팅 리소스를 제공하여 고객들이 AI 기술을 쉽게 활용할 수 있도록 지원하고 있습니다.

또한, 대규모 AI 연구 기관과 기업들도 자체 인프라를 구축하여 AI 컴퓨팅 리소스를 활용하고 있습니다. 예를 들어, OpenAI는 GPT-3와 같은 대규모 언어 모델을 훈련시키기 위해 고성능 GPU 클러스터를 구축하였으며, Google은 TPU(Tensor Processing Unit)를 개발하여 AI 컴퓨팅 성능을 향상시키고 있습니다.

클라우드 전환 vs 클라우드 이탈

AI 컴퓨팅 리소스의 사용 현황을 살펴보면, 클라우드 전환(Cloud Adoption)과 클라우드 이탈(Cloud Repatriation)이라는 두 가지 트렌드가 나타납니다.

  • 클라우드 전환: 많은 기업들이 AI 컴퓨팅 리소스를 클라우드로 이전하고 있습니다. 클라우드는 유연성, 확장성, 비용 효율성을 제공하여 AI 프로젝트를 빠르게 시작하고 스케일링할 수 있게 해줍니다.
  • 클라우드 이탈: 반면, 일부 기업들은 클라우드 비용의 증가와 데이터 보안 문제 등으로 인해 다시 온프레미스(on-premises) 환경으로 돌아가고 있습니다. 이러한 기업들은 고성능 컴퓨팅(HPC) 클러스터를 구축하여 AI 컴퓨팅 리소스를 직접 관리하고 있습니다.

보조 이미지 1

GenAI 도입 전략

AI 컴퓨팅 리소스의 효율적인 활용을 위해서는 GenAI(Generative AI) 도입 전략이 필요합니다. GenAI는 새로운 데이터를 생성하거나 기존 데이터를 변형하여 새로운 가치를 창출하는 AI 기술을 의미합니다. GenAI 도입 전략은 다음과 같은 요소들을 고려해야 합니다:

  • 데이터 관리: 고品質의 데이터셋을 수집하고 관리하는 것이 중요합니다. 데이터의 질이 GenAI 모델의 성능을 결정짓습니다.
  • 모델 선택: 적절한 AI 모델을 선택하고, 해당 모델의 특성과 요구 사항을 이해해야 합니다.
  • 인프라 최적화: AI 컴퓨팅 리소스를 최대한 활용하기 위해 인프라를 최적화해야 합니다. 예를 들어, GPU, TPU 등의 고성능 컴퓨팅 자원을 효과적으로 배치하고 관리해야 합니다.
  • 보안 및 컴플라이언스: AI 컴퓨팅 리소스의 사용 과정에서 데이터 보안과 컴플라이언스를 준수해야 합니다. 특히, 민감한 데이터를 다룰 때는 더욱 주의해야 합니다.

보조 이미지 2

사례: NVIDIA DGX SuperPOD

NVIDIA DGX SuperPOD는 대규모 AI 컴퓨팅을 위한 고성능 인프라 솔루션입니다. 이 시스템은 140개의 NVIDIA DGX A100 시스템으로 구성되어 있으며, 280개의 NVIDIA A100 Tensor Core GPU를 통해 14 petaFLOPS의 AI 성능을 제공합니다. DGX SuperPOD는 다양한 AI 작업, 특히 대규모 언어 모델(LM)의 훈련에 적합합니다.

예를 들어, Swiss National Supercomputing Centre(CSCS)는 DGX SuperPOD를 이용하여 AI 기반의 기후 모델링을 수행하고 있습니다. 이 시스템은 기후 데이터를 분석하고, 미래의 기후 변화를 예측하는 데 큰 역할을 하고 있습니다.

마무리: 지금 무엇을 준비해야 할까?

AI 컴퓨팅 리소스의 효율적인 활용을 위해서는 다음과 같은 준비가 필요합니다:

  • 데이터 전략 수립: 고질적인 데이터 관리를 위한 전략을 수립하고, 데이터의 질을 향상시켜야 합니다.
  • 인프라 선택 및 최적화: 클라우드와 온프레미스 인프라의 장단점을 고려하여 적절한 인프라를 선택하고, 이를 최적화해야 합니다.
  • 보안 및 컴플라이언스 준수: AI 컴퓨팅 리소스의 사용 과정에서 데이터 보안과 컴플라이언스를 철저히 준수해야 합니다.
  • 인력 교육 및 역량 강화: AI 컴퓨팅 리소스를 효과적으로 활용하기 위해서는 관련 인력의 교육과 역량 강화가 필요합니다.

이러한 준비를 통해 기업들은 AI 컴퓨팅 리소스를 최대한 활용하여 경쟁력을 높일 수 있을 것입니다.